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Preface

In 1978 an article in the Journal of Computational
Physics (Ref 6) evaluated numerical methods for elliptical
partial differential equations. The results showed the
method of weighted residuals used with finite element ’
analysis yielded more accurate results in less computer
time than finite difference methods. Dr. Kaplan of the
Air Force Institute of Technology, Physics Department, and
Dr. Kessler of the Air Force Materials Laboratory decided
to investigate the method of weighted residuals for numer-~
ical solution of the heat equation. Specific application
would eventually be to the transient heat equation for
bodies of axial symmetry with the goal of reduced computer
time for solution. This thesis represents a first step in
that investigation by studying the method of weighted
residuals applied on the whole domain of interest as a
numerical method.

Thanks are due to Dr. Kaplan for his unfailing encour-
agement and guidance during the research quarters. Thanks
are also due to Sally Lindsay who typed this manuscript.
Her experience and professional approach did much to present
the finished product in its best light. Last, my greatest
thanks and appreciation are due to my wife and infant
daughter for their personal sacrifices during a time which

proved to be one of great personal adjustment and turmoil.

Robert E. Naegeli
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Abstract

The method of weighted residuals applied on the whole
domain for steady state and transient heat generation
problems was compared to finite difference methods. The
comparison consisted of the maximum absolute error from
the exact solution and computer time required for solution.

One ste;dy state and one transient heat generation
problem were solved by collocation and Galerkin weighted
residual methods and finite differences. The least squares
weighted residual method was also used for the steady state
problem. Both problems were one dimensional and had
Dirichlet boundary conditions. Integrals for weighted
residual methods were evaluated analytically to produce
recursion relations. The transient problem was solved by
the reduction to ordinary differential equations method for
weighted residuals.

The Galerkin method was fastest to a given accuracy
for both problems evaluated. The accuracy of Galerkin and
other weighted residual methods was greater than finite
differences after a point at low solution accuracy. This
crossover point was typically two to three digits of accu-
racy. The polynomial trial functions used for weighted
residual solutions exhibited a nﬁmerical instability for
solutions of 10 terms and over increasing the maximum abso-
lute error. Orthogonal collocation and weighted residuals

on finite elements were recommended as alternate methods.

vi




INVESTIGATION OF THE NUMERICAL METHODS OF
FINITE DIFFERENCES AND WEIGHTED RESIDUALS
FOR SOLUTION OF THE HEAT EQUATION

I Introduction

The method of finite differences has long been used for
numerical sélution of the heat equation and other differen-
tial equations similar to it. One example is the diffusion
equation of nuclear engineering. Another method, the method
of weighted residuals used with finite elements, has pro-
duced results of equal accuracy at a fraction of the compu-
ter time (Ref 6:323-350). These results were obtained for
problems of structural stress which are similar to the
steady state heat equation. This paper will investigate the
method of weighted residuals (MWR) applied over the whole
domain of the problem to see if it has similar advantages
over finite differences.

The objective of this study is to compare and evaluate
the finite difference method and the method of weighted
residuals on the whole domain for the steady state and
transient heat equations. The basis of the comparison will
be accuracy of solution and computer time required. For
this comparison the MWR will be used on the whole domain of
interest and not finite elements. One steady state and one
transient problem are solved using both methods and the

results compared. Both problems are in one space dimension




e

of a cartesian coordinate system with Dirichlet boundary
conditions.

The paper consists of chapters on the theory of MWR and
finite differences, the problems chosen, results, and con-
clusions. The theory chapter discusses the MWR for steady
state and transient problems and finite differences. 1In the
problems chapter, the problems are discussed and the MWR and
finite difference solutions are developed. The results and
comparisons chapter lists the results of comparison and
problems encountered. Last, the conclusion chapter gives

the overall conclusions of the investigation. i
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II Theory

The MWR used on the whole domain of interest constructs
a series function which approximately satisfies the differ-
ential equation and boundary conditions over the domain.

The finite difference method, on the other hand, produces a
table of values which approximate the solution to the dif-
ferential equation and boundary conditions at the mesh
points. Values of the solution between mesh points must be
obtained by interpolation for finite differences, but are
obtainable directly from the MWR series solution for any
point in the domain.

The comparison between methods will be made by measuring
the time to attain various accuracies. Accuracy is increased
by finer mesh spacing for finite differences and more terms
in the series solution for MWR. This chapter will cover the

MWR and finite difference methods to be compared.

The Method of Weighted Residuals

The basic idea of the MWR is a series of complete and
linearly independent trial functions which is made to satisfy
the differential equation and boundary conditions (Ref 3:35).
The series is substituted into the egquation and boundary
conditions and the error required to vanish in an average
sense.

Take the case of general boundary conditions for the

steady state problem:




LU(X) = f(x) in Region D (1)

KU (x) Y (s) on Boundary S (2)

where L is the differential operator and K is the boundary
condition operator. The solution, U(x), is approximated as
—_— N —_—
UN(X) = iil a; ¢i(X) (3)
where ai are undetermined constants and ¢i(§) are the trial
functions which make up the trial solution expansion (Ref 8:

258-261, 3:8). Substituting UN(E) for U(X) in Egs. (1) and

(2) yields the residual, R:

It
o)

LUN(X) - f(x) (4)

It
o

KUN(E) - ¥ (s) (5)

Since UN(E) is just an approximation, the equations may not
balance. The error or residual of UN(§) instead of U(X) in
Egs. (4) and (5) is integrated with a weight function to

minimize that error:

waj(LuN(i) - £(x))dp = 0 3j=1,...N (6)
4wj(KUN(§) - ¥(s))dS = 0 3j=1,...N (7)

The weight functions, wj’ may be determinea in several ways
and will be discussed later. There must be N weight func-

tions to solve for the N undetermined constants.
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The undetermined constants in UN(;) are found by solv-
ing Egs. (6) and (7) simultaneously. Substituting the
expansion for UN(§) of Eq. (3) into Egs. (6) and (7) yields

for j =1,...N

N

j_il a'i\{;ijCbi(x)dD - 4wjf(x)dD = 0 (8)
N

T aiyf;.K¢.(§)dS - J[w.w(s)ds = 0 (9)
i=1 s J * s 3

Equating Egs. (8) and (9) yields for j = 1,...N

N
pX . Lo, (x - K¢, (x)ds
N a; _{;WJchl(x)dD éwJK¢l(x)d

= wajf(E)do- fsij(s)ds (10)

Thus Eq. (l10) becomes an N by N matrix problem of simultane-

ous equations in a,

Aa = b (11)

where a is the vector of arbitrary constants a, where b is

the vector of integrals not involving a, for 3 =1,...N

b = ij.f(i)dD - ./;.w(s)ds (12)
- D s 3
and where A is the coefficient matrix for j = 1,...N
N — —
A = I jﬁd.L¢i(x)dD - J/;.K¢i(x)ds (13)
i=1("p J s
5
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Note that an underlined capital letter symbolizes a square
matrix and an underlined lower case letter symbolizes a
column matrix or vector. Once the system of simultaneous
equations has been solved for the a.., the approximate solu-
tion has been determined for the whole domain.

Types of Method Application. There are three ways in

which MWR is generally applied. They are boundary methods,
interior methods, and mixed methods (Ref 2:11).

In boundary methods the trial functions satisfy the
differential equation exactly, but not the boundary condi-
tions. MWR is then applied on the boundary conditions only.
Then Eq. (4) for differential equation residual is satisfied
exactly and those integrals in Egs. (6) and (8) total zero.
Last, Eq. (10) which specifies the matrix equations to

solve for unknown constants becomes

a; éijd;i(x)dS = 'éij(s)ds {(14)

For interior methods the trial functions satisfy the

™~ 2

i=1

boundary conditions so MWR is applied on the differential
equation only. Then as with boundary methods Egs. (7) and

(9) are no longer needed and Eq. (10) becomes for j =1,...N

N B / _
i a; /ij¢i(x)dD = wjf(x)dD (15)

i=1 D D

The problems studied in this paper are solved with interior

MWR.
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Last in mixed methods the trial functions may satisfy
neither the differential equation nor boundary conditions.
The trial functions may satisfy some parts of either. A
boundary condition that is usually satisfied is the value of
the function on the boundary (Ref 3:28-30). Egq. (10)
remains the same for mixed MWR.

Types of Weighting Criteria. Several types of criteria

for minimizing the residual exist. Each criteria has an
associated set of weight functions which are used to inte-
grate the residuals in MWR.

The weight function in the collocation method is the

Dirac delta function (Ref 2:148):

wj = §(x - xj) (16)

The delta function forces the value of the residual integral
of Egs. (6) and (7) to eagual zero at the collocation

point specified in the delta function. For a trial

function expansion of N terms, N points are needed to gen-
erate N equations for simultaneous solution.

Choice of the collocation points can have a definite
effect on the accuracy of the solution obtained for expan-
sions with a low number of terms. A usual practice is to
choose them evenly spaced through the region or boundary.
At any event as the residual is made zero at more and more
points, it presumably approaches zero throughout the region

or boundary (Ref 3:9). Orthogonal collocation uses




orthogonal polynomials as trial functions and chooses the
collocation points as the roots to the polynomials to
improve the accuracy of low order expansions (Ref 3:97-98).
Also a method called least sguares-collocation uses more
collocation points than constants to be determined. The
residuals are squared, added, and minimized with respect to
the constants (Ref 3:26-27). Least squares-collocation on
the boundary has been applied as a method for steady-state
and transient heat problems with arbitrary geometry and
boundary conditions in two and three dimensions (Ref 16:103-
108).

A second weighting criteria called the subdomain method
integrates the residual over N subintervals of the domain.
Then the weight function is (Ref 2:149)

w, = (17)

{1 in subdomain i
i

0 outside of subdomain i

The Galerkin method corresponds to a third criteria for
minimizing the residual. In the Galerkin method the trial
functions in the approximate solution expansion of Eq. (4)

are used as weight functions:
w, = ¢. (18)

This amounts to making tlLe weight functions orthogonal to
the residual (Ref 2:149).

A fourth method is least squares. Here the integral of
the square of the residual is minimized with respect to the

solution constants (Ref 2:150)
8
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a/z—_’/aR = _
E R™" dx = 2 ’Q?;Rdx—o (19)

D D
where R is the residual, D represents the domain, and a, are
the solution constants of Eg. (4). The weight function for
least squares is then the derivative of the residual with

respect to one of the solution constants:
w, = s (20)

This weight function then becomes the ay term of the
residual.

Other weight functions than these are used. 1In fact
the weight function can be any complete set or N members of
it (Ref 3:11).

The criteria used for the problems in this paper will
be collocation, Galerkin, and least squares. These were
the criteria used in the paper comparing FDM with the MWR
applied in finite elements as mentioned before (Ref 6:323-
350).

Trial Functions. The trial functions provide much of

the power of MWR since they incorporate known information
into the solution. Trial functions can incorporate the
general symmetry of a problem or satisfy some of the boundary
conditions (Ref 3:35). If the boundary conditions in a
problem are of the first kind, such as Uo(;) = f°(§) = y(s),

then a convenient form of trial solution is

£ + I a6, (X (21)

N
z
i=

U_(x)
© 1




where the trial functions ¢i(;) are zero on the boundary and
fo(;) reduces to Y (s) on the boundary. Then a problem like
Eq. (1) and (2) can be transformed into an interior MWR
problem. Also fo(i) which represents the boundary condition
can be eliminated from the trial solution by applying the
differential operator of Eq. (1) to the trial solution term

by term. Then Eq. (1) becomes
LUo(x) = Lfo(x) + LUN(x) = f£(x) (22)

where L is the differential operator, fo(§) is defined as in
Eq. (21), and UN(E) is the new trial solution

— — — N —

UN(X) = Uo(x) - fo(X) = ai¢i(x) (23)

i=1
Then Egs. (1) and (2) become a problem with a new non-

homogeneous part
Lu(x) = f(x) - Lf (x) (24)
and a new boundary condition (Ref 3:30)
u(x) = 0 (25)

The set of functions chosen as trial functions ¢i(§)
as in Eq. (23) must be complete and linearly independent to
represent the solution to a boundary value problem (Ref 3:
35). One such set is the polynomials. Linearly independent
and continuous polynomials have been proven complete for

homogeneous and nonhomogeneous steady state heat equations

10




in one and two dimensions (Ref 3:355-356,359,Ref 8:263-265,
273,277). 1In this case the solutions evolved are uniformly
convergent to the true solution. Then we can choose an

€ > 0 and

|u (x) -UN(?c)l < & (26)

true

where Utrue(g) is the true solution and UN(I) is the trial
solution as in Eq. (23). The property of uniform convergence
provides a test of accuracy since the absolute value of the
error should decrease for trial solutions which are expan-
sions of more terms of the set of trial functions. As more
terms are taken the trial solution should represent the
true solution more accurately. However, the exact choice of
the trial functions will influence accuracy in low order
exvansions and affect the rate of convergence (Ref 3:
34-36).

Trial functions for time dependent problems such as
the transient heat equation can be obtained using trial
functions in the space variables which satisfy the boundary
conditions multiplied by unknown functions of time:

—_ N —

UN(x,t) = iil Ai(t)¢i(x) (27)
where Ai(t) is the unknown function of time (Ref 3:36). The
time functions are found by applying MWR and the initial
conditions as illustrated in the next section (Ref 3:44-45).

Transient Problems. The MWR solution methods developed

earlier in this chapter were for steady state problems only.

11
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For transient problems using the trial functions of Eq. (27)
the solution process is different. The dependence of the
trial functions on time as well as a multiplying constant
must be determined. Applying the MWR to the boundary condi-
tions and differential equation determines the time depend-
ence. Then applying the MWR to the initial conditions with
time equal to zero in the trial solution determines the
constant multipliers (Ref 3:44-45). Such a treatment is
called reduction to ordinary differential equations.

The determination of the time dependence of the trial
solution for the transient heat equation requires solving
simultaneous ordinary differential equations in time. The
transient heat equation in dimensionless form with boundary

and initial conditions in addition is

U (X, t)

v2U(X,t) + £(X,t) X

(28)

where U(x,t) is the dimensionless temperature, f(x,t) is a
heat generation term, and V2 is the Laplacian. Note that
heat generation depending on temperature is not considered
here. If the trial function of Eq. (27) which satisfies
the boundary conditions is substituted into Eq. (28), the
residual, R, is

N 2 _ _ N _ aAi(t)

' l[Ai(t)V ¢i(x)] + f(x,t) - I [¢i(x)-————at ] = R (29)

i= i=1

Applying a MWR weight criteria to this residual yields for

j=1,...N

12
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3L
i
oz

2, - 3 -
Ai(t) ngjv ¢i(X)dD . §E~Ai(t)j£wj¢i(X)dD

i=1

- jnw.f(i,t)dD (30)
D J

where Wy is the weight function for the criteria used. Egqg.

(30) can be expressed in matrix form as
Ga = HI a-b(t) (31)
s a fata~- =2

where G and H are the coefficient matrices representing the
integrals in Eq. (30), where a is the vector of Ai(t), and
where b(t) is the vector representing the last integral of
Eq. (30) (Ref 4:735-736). If the inverse of H can be found,

Eg. (31) can be reduced to

Fga = HiGa+H b (32)

where H™1 is the inverse of H. Eq. (32) is a system of
simultaneous, linear, ordinary differential equations for
i=1,N

dAi(t)

It ailAl(t) + ... + aiNAN(t) + fi(t) (33)

where Ai(t) is an element of vector a, where ail . aiN are
elements of matrix gfl G, and fi(t) are elements of vector
! b(t) (Ref 9:218-219).

The fi(t) term in Eq. (33) makes it a nonhomogeneous
system of first order differential equations, If the
heat generation term f£(x,t) in Eg, (28) is a function

of position only, the problem may be separated into a

13




steady state and a homogeneous transient problem. Substitut-~
ing a new variable for temperatuvre in Eq. (28) and its bound-

ary and initial conditions can separate the problem:
T(x,t) = U(x,t) + V(x) (34)

where T(X,t) is the new temperature variable, U(X,t) is the
temperature. for the transient problem, and V(x) is the tem-
perature for the steady state problem (Ref 11:152-153)., The
steady-state problem can be solved by MWR developed earlier
in this chapter. The homogeneous transient problem is then
solved by the MWR reduction to ordinary differential equa-
tions outlined in this section.

For the homogeneous transient problem, Eg. (28) reduces

to
2. = _3u(x,t)
\ U(X,t) = T (35)
U(s,t) = y(s) (36)
U(x,0) = g(x) (37)

where Eq. (36) represents boundary conditions which do not
vary with time and Eq. (37) is the initial condition. The
transient problem considered in this paper is described by
Eq. (35}, (36) and (37). Again .substituting the trial
function of Eq. (27) which satisfies the boundary conditions
into Eq. (35) and applying MWR leads to a statement similar

to Eq, (30) for j = 1,...N:

14
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E Ai(t) ijV ¢i(X)dD = iilﬁAi(t) ij ¢i(x)dD (38)

where wj is the weight function and Ai(t) the unspecified

function in time. Equation (38) expressed in matrix form is

(39)

84 &
ol 12

Ga = H

where G and H are the coefficient matrices as before and a
is the vector of Ai(t). Multiplying by the inverse of H
again yields a system of ordinary differential equations in

time which are homogeneous in this case:

da; (t)

3T = ailAl(t) + ...+ aiNAN(t) (40)

where a! are the elements of the coefficient matrix

1
i1 *°° 34N

E-l G as before.
The general solution to the problem of Eq. (40) is
(Ref 9:220-222,294)

Xlt kzt ANt

Ai(t) = C e + Czaize + ... + C.a..e (41)

where Al ..+ A, are the eigenvalues of the system of equa-

N
tions given in Eq. (39) or more specifically the matrix

1! G. Also the a) -+ ayy are the components of the

linearly independent eigenvectors of matrix g-l G and

C C,, are the unspecified multipliers which multiply all

l LI N
elements of that eigenvector. Eq. (39) is then an eigen-
ALt
value problem since the derivative of an eigenvector aije J
ALt
is a . A.e 7 (Ref 9:294):
i3t ( 9 )

15




Ga = AHa (42)

Forming the solution for Ai(t) is then a two-step pro-
cess. First the eigenvalues and eigenvectors of the system
of ordinary differential equations describing the problem
are found to determine the time dependence of exponential
decay of the transient solution. The last step of
c is

determining the constant multivliers, C N’

IBERE
analogous to the MWR for steady state problems. The trial
solution for time zero is substituted into the initial con-
dition, Eq. (37), to form a residual. The residual is then
minimized with-a weight function to yield simultaneous

equations for Cl ees C. with j = 1,...N:

N
N / 3 /‘ _
iil Ai(O) ijcbi(x)dD = ijg(x)dD (43)

where Ai(O) is the time function of Eg. (27) evaluated at
the initial time, where g(x) is the initial temperature dis-
tribution, wj the weight function, and ¢i(§) the trial func-
tions. Since Ai(t) is a sum of exponentials in time, for
the initial time zero they take a specific value of one.

Each Ai(O) then becomes a sum of the eigenvector multipliers,

C C,. and the summation can be changed to add the C1

1 - Cy
terms from all Ai(O) and the saﬁe for the other multipliers.

The matrix system then reduces to

e = d (44)

16




where J is the coefficient matrix of multipliers, ¢ is the
multiplier vector, and d is the vector of initial values.

Once the simultaneous equations are solved, the Ai(t) and

MWR solution is finished (Ref 9:294).

Only two of the three MWR criteria used for steady
state problems are applicable to this transient method.
Collocation and Galerkin both result in the eigenvalue
problem of Eq. (42). However, least square does not since
the resulting equations have factors of X2 as well as A.
Only the collocation and Galerkin criterias will be used

for the transient problem (Ref 2:313-314).

Nuirerical Solution for MWR

This section will outline the solution algorithms for
the steady state and transient problems.

Steady State. The numerical solution of MWR on the

whole domain of interest has been largely limited to collo-
cation methods. These methods include least squares-collo-
cation and orthogonal collocation mentioned earlier under
the section on types of criteria. Collocation offers an
advantage since no integrals need to be evaluated. Only
the values of residuals at collocation points need be eval-
uated.

Collocation, Galerkin, and least squares criterias
were used to compare MWR on finite elements with finite
differences in an article by Houstis et. al.(Ref ©:323-350).

In order to compare the results in this paper with the

17




results of Houstis, all three criteria will be used for the
steady state problem.

Evaluation of the integrals for the Galerkin and
least squares criteria presents another difficulty. A form
of numerical integration could be used to evaluate the
integrals over the domain of interest. However, since the
trial functions used are simple polynomials and the integra-
tion on one dimension only for the problems in this paper,
the integrals can be easily evaluated analytically to
develop a recursion relation for the matrix elements. The
recursion relation then needs to be evaluated only once for
each matrix element where the integrand would need to be
evaluated several times for numerical integration.

Another choice to be made is the choice of a matrix
equation solver. Since every element of the MWR coefficient
matrix will have a non-zero value, the best choice appears
to be Gaussian elimination as a matrix equation solver.
Iterative methods can be faster than Gaussian elimination
for sparse matrices, but the rate of convergence is uncer-
tain. The Gaussian elimination will be used for both MWR
and finite difference solutions.

Then the algorithm for solution of the steady state
problem for MWR consists of two .steps. First, the solution
matrices are formed from recursion relations. Then the
matrix systems are solved to obtain the defining constants

for MWR.

18
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After the solution is obtained it is compared against
the true analytical solution to determine its accuracy.

Two measures of accuracy will be used. The first is abso-
lute accuracy which should decrease as the MWR solution con-
tains more terms. The second is fractional or percentage
accuracy which is most of interest in a practical sense.

The fractional error determines the number of significant
figures in the answer.

After the solutions are obtained and the accuracy is
checked for solutions with different numbers of terms, the
time to compute the solution is measured. The central pro-
cessor time of the Control Data Corporation Cyber 74/Cyber
750 computer system with NOS/BE operating system was used
to measure the solution formation time. Since the central
processor time outpu: is only accurate to .01 seconds, the
solution for a given number of terms must be repeated several
times for accurate measurement (Ref 5:8-9).

Transient. Numerical solution of the transient MWR
problem involves solution of an eigenvalue problem and a
system of simultaneous linear equations. Solution of the
simultaneous equations will be by Gaussian elimination as
for the steady state problem. The eigenvalue problem will
be solved in its general form,

The eigenvalue problem is shown in Eag. (42) which is

repeated as Ea. (45) here

Ga = XMHa (45)
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where H is the coefficient matrix for integrals which mini-
mize the residual terms involving the time derivative, where
G is the coefficient matrix for the integrals which minimize
the space derivative, where a is the vector of unknown time
functions, Ai(t)’ in the trial solution, and where X is the
eigenvalue. The vector a is the set of the N linearly
independent eigenvectors of the system and A represents the
N eigenvalues associated with the eigenvectors. The total
solution for Ai(t) is shown in Egq. (41). A subroutine which
solves the eigenvalue problem without inverting the

H matrix was selected from the IMSL program library. This
subroutine, EIGZF, allows the G and H matrices to be input
directly without inversion (Ref 10:241-256,7:EIGZF1l-5).

The algorithm for computing the transient MWR solution
involves four steps. First the G and H matrices are computed
from Eq. (38). Next the eigenvalues and eigenvectors are
found Qy EIGZF subroutine. Then the coefficient matrices for
calculation of the constant multipliers are evaluated as
indicated in Eg. (43) and (44). Last the system is solved
for the multipliers.

As for the steady state problem, the accuracy of solu-
tion and formation time of solution must be measured. The
one MWR.solution is good for all times due to the exponen-
tial time dependence of the time function Ai(t) of Eq. (27).
Time for solution must be measured for different numbers
of terms in the MWR solution. Then accuracy at different

times is measured against the analytical solution.
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The Finite Difference Method

The finite difference method approximates the deriva-
tives of a differential equation by the ratios of differ-
ences between points in the domain of the problem. The
system of equations that results can be solved for the values
of the function in the differential equation at the mesh
points. Since the finite differences only approximate the
derivatives, the values for the function have some error
based on the mesh spacing.

The two derivatives in the steady state and transient
heat equations will be approximated by central and forward
differences. The two derivatives are the second derivative
with respect to the space variable and the first derivative

with respect to time:

22ux,t) _ su(x,t) _ U(x+th,t) - 2U(x,t) + U(x=h,t)
3x2 h2 h2
(46)
—at K K

where Eg. (46) shows the second derivativc with respect to
X, Eq. (47) shows the first derivative with respect to time,
where U(x,t) is the function differentiated, where h and k
are the distances between mesh points in x and time respec-~
tively, where § denotes a central difference taken about the
point (x,t) where the derivative is approximated, and where

A denotes a forward difference taken from the point (x,t)
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{Ref 15:59-60). Eq. (46) and (47) are also valid for ordi-
nary derivatives.

For the steady state problem the unknown value of the
function at all mesh points will be found simultaneously.
The differential equation using finite difference approxi-
mations is formulated for each mesh point. Then the system
of equations is solved simultaneously by the same Gaussian
elimination method used for MWR,

Explicit methods will be used for the transient prob-
lem. In explicit methods, the differential equation with
finite difference approximations is used to compute the
value at a next point from values at known points.

Since the difference expressions of Egs. (46) and (47)
are derived by combining Taylor series expansions of the
function to be differentiated, the error in the expressions
can be found by examining the expansion terms not used in
the expression. The central difference then has an error
proportional to h2 or of order h2, O(hz), where h is the
mesh spacing. The first forward difference has an error
O(k) where k is the mesh spacing. The mesh spacing deter-
mines the error then and closer mesh spacing will give more
accurate results. Also note that for an equation that uses
two difference expressions, such as the transient heat equa-
tion, the error is the sum of the two errors (Ref 15:59-60,

108).
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I1II The Problem Set

One steady state and one transient heat problem are
solved by the MWR on the whole domain and by the finite
. difference method. Both problems are in one space dimension
with Dirichlet boundary conditions. This chapter discusses
the problems and their solutions. To prevent any advantage
between methods all MWR and finite difference solutions were
programmed in Fortran 4 Extended. The programs were also

compiled with the same compilation option, option 1.

Steady State Problem

l For the steady state problem consider for 0 £ x £ 1

2
! | d—‘l‘—z"’—+u(x) +% = 0 (48)
& dx

U) = U() = 0 (49)

where Eq. (48) represents the heat equation, where Eq. (49)
is the homogeneous Dirichlet boundary condition, where U(x)
is temperature, and where U(x)+x represents a heat genera-
tion term. Removal of the thermal conductivity constant
factor which is normally shown multiplying the second deriv-
ative of temperature and reduction of the equation to this
form requires a very special heat generation term. However,
study of the eguation in this form provides a convenient

closed form solution (Ref 8:269):

sin(x)

U(x) sin(l)

- x (50)
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For the MWR solution to the steady state problem a poly-
nomial trial function which satisfies the boundary conditions
and has been proven complete for similar problems is (Ref 3:

356)

6, = xF(1-x) = xt - x (51)

Then the trial solution UN(x) will be
N . .
UN(x) = I a.(x” - x ) (52)

where a, are undetermined constants. Substituting Eq. (52)
into Eq. (48) yields the residual, R, of the differential

equation for this interior method application of MWR:

i-2 i(i+l)xl—1 + x* - x1+l] + x

o
[}
2z

ai[i(i—l)x

i=1

(53)
Simultaneous equations can now be constructed from the
residual by integration with the weight functions of the
three MWR methods to be evaluated, for j = 1,...N:

1
N . . . .
L a.f j[i(i-l)xl-z - ien it ¢kt - xitliax

i
L "
= -fwjxdx (54)

where wj i~ .he weight function and Eg. (54) represents one

of the N simultaneous equations. Using the weight functions

i
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of Eq. (15), (16), and (17) the integrals are evaluated to
give recursion relations. The recursion relations evaluated
for values of i and j provide the matrix elements for the
matrix problem A a = b where A is the coefficient matrix
defined by the left side of Eq. (54), b is the vector
defined by the right side of Eq. (54), and where a is the
vectcr of undetermined constants, a, . The specific weight
function, Wy used defines the rows of A and the ith term
of the trial solution defines the columns. Once the matrix
problem has been solved for a the MWR solution is finished.
Recursion relations for the collocation method are the

residuals:

i(i+1)x§_l - i(i-1)xdT? o A x§ (55)

A3,

b(3j)

xj (56)

where xj is the jth of the N equally spaced collocation

points, A(j,i) is an element of the matrix A, and b(j) is
an element of vector b. Also the recursion relations for
the Galerkin method using the trial functions as weight

functions are

C ooy [+ 4+ i(i-1)]) 2 _ 1
A(j,i) = G+D) Y GEiF T G

i(i-1) i(i+l) + 1

=GR T TG (57)
. 1l
PO = GmeEm (58)
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Last, the recursion relations for the least squares method

with terms of the residual as weight functions are

A(3,i) = 303-D)i(i-1) _ [3(3-1)i(i+l) + i(i-1)3(5+1)]
I (3+i=3) (i+3-2)

[(3-1) + 3(G+1)Yi(i+l) + i(i-1)]
(i+3-1)

+

[5(3-1) + j(G+1) + i(i+1l) + i(i-1)]

(i+3)
+ [i(i+1l) + 1 + j(3+1)] _ 2 + 1
(i+j+1) (i+3+2) (i+3+3)
\ (59)
b(3) = 1 = smmtr—ee (60)
(3+2) (3+3)

The A matrices resulting from the three methods have all
non-zero elements.

The finite difference solution is constructed using a
central difference approximation for the second derivative
of temperature with respect to x. The central difference
approximation of Eq. (46) for temperature as a function of x
only is

U. - 2U. + U.
gl - 3% ] j-1 (61)
J h2

where the subscript j identifies the particular mesh point
of N equally spaced mesh points, where U%l is the second
derivative with respect to x, and where h is the spacing
between mesh points. Then Eq. (48), the differential equa-

tion, becomes the difference equation
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-y )+ (2—h2)Uj - U, = n? x, (62)

-1 j+1 3

where Eg. (61) has been substituted into Eq. (48) and multi-
plied by -hz. With N mesh points the interval 0 to 1 of the
problem is divided into N+l spaces so h = 1/(N+l). Then
the matrix problem A a = b for simultaneous solution of Eq.
(62) at the mesh points can be defined as for MWR where the
jth element of a is the value of temperature, Uj' at the jth
mesh point. The matrix A is tridiagonal with main diagonal
elements (2-h2), with elements of the next diagonals above
and below the main diagonal of -1, and with the other ele- '
ments zero. Since the Dirichlet boundary conditions are
homogeneous, the elements of b are h? xj. Once the matrix
problem A a = b has been solved for the value of temperature
at the mesh points, a, the finite difference solution is
complete.
The systems of simultaneous equations A a = b for MWR
and finite differences will be solved by Gaussian elimina=-
tion. A subroutine, LEQT1F, was selected from the IMSL
program library to perform the Gaussian elimination. LEQTIF
performs Gaussian elimination with partial pivoting, equi-
libration, and the Crout algorithm (Ref 7:LEQTI1F 1-4). )
LEQT1F also indicates when solution is not possible due to
a singular matrix A and tests the solution a to insure it

agrees with matrix A to a specified number of digits.
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Transient Problem

The transient problem or initial value problem is the
problem of a wall warming up. The problem stated in dimen-

sionless form is for 0 £ x £ 1

22 3
X
u(o,t) = 1 Uu(l,t) = 0 (64)

U(x,0) = 0 (65)

where Eg. (63) is the partial differential equation, where
Eq. (64) is the Dirichlet boundary conditions, where Eg. (65)
is the initial condition, and where U(x,t) is the dimension-

less temperature. The exact solution to the problem is

2 - sin{nwx) -nznzt
U(x,t) = 1 -x-= ¢ 2=—/"2° ¢ (66)
m n
n=1
. where l-x represents the steady state solution that the

whole solution decays to as time increases and where the
balance of Eg. (66) represents the transient solution
(Ref 1:93-96).

The MWR solution will be of the reduction to ordinary
differential equations form. The trial functions will be
defined as in Egq. (27) where the space part of the trial
function satisfies the boundary conditions and the undeter-
mined function of time is found to satisfy the differential

equation and initial conditions. The nonhomogeneous
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boundary conditions can be satisfied as in Eq. (21) by a

series of trial functions which is zero on both boundaries

and a leading function which reduces to the value of the
solution on both boundaries. Then we can choose a trial
function as

i+l (67)

(I B4

UN(x,t) = 1 - x +

| Ai(t)(xi - x
bR

1
where UN(x,t) is the trial solution, where 1-x satisfies the
nonhomogeneous boundary conditions, where the spacial trial
functions, (x.l - xi+l), satisfy the homcgeneous boundary
conditions, and where Ai(t) is the undetermined function of
time. The spacial trial function, (xi - xi+l), is the same
one used for the steady state problem.

The first step in the transient MWR solution is forming
the matrices for the matrix eigenvalue problem, G a = A H a,
where G is the coefficient matrix that corresponds to the
left side of Eq. (63), H is the matrix for the right side of
Eq. (63), a is the vector of Ai(t) time functions, and where
A is the eigenvalue. First, form the residual of the dif-

ferential equation by substituting the trial function Eq. (67)

into Eg. (63):

N o2 i-1
0+ I A (D) EGE-DxIT? - (e axtTh
i=1
N : 3A. (t)
= 0+ I [x% - xitl e (68)
i=1 t
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Note that the residual of the leading term of the trial
function is zero. Thus, the problem becomes an
eigenvalue problem as in Eg. (39). The form of the time

function, Ai(t), for a problem of this type is

N Akt
A.(t) = Z C_ a.,, e (69)
i k=1 k ik
where as represents one element of the kth eigenvector of

a, where Ck represents the multiplier of the kth eigenvector,
and Ak is the eigenvalue associated with the kth eigenvector.
Since the leading term of the trial solution is the steady
state solution, change the form of Ai(t) to indicate it is

decaying in time:

N -At
A . (t) = ¥ ¢, a,, e (70)
i k=1 k ik
Then the residual Egq. (67) becomes
N . .
N EYEE PP U R Pt I
i=1
N . .
ST W S s d B W (71)
i=1

where a, is the kth eigenvector of a. Minimizing the
residual with the MWR weight function provides the matrices

to solve for X, and a,:

k
N A : :
£ woli (=02 - e ixPh ax a
i=1 Jy J
N ' i+l i
= A I [wj[x - x7] dx ay (72)
i=1
0
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where wj is the weight function. The left side of Egq. (72)
is matrix G and the right side H for the eigenvalue problem
Ga=»XHa.

The two minimizing weight criteria for the transient
problem are collocation and Galerkin. The G and H matrices

for collocation are

_2 ’ i=l

G(3,i) = | | (73)
[(i-l)ile.‘2 - (i+l)ix;—1], i=2,...N

H(j,i) = (xji.+l - x%) (74)

where G(j,i) and H(j,i) are elements of matrices G and H and
where xj is the jth of N equally spaced collocation pointé on

the interval 0 < x < 1. The Galerkin matrices are

o .2

Coay - d(i-1) 24 (i+1)i
G(j,i) = (G+i-1) G+ T GFitD) (73)
K3, 1) 2 1 1 (76)

(I+3+2) - (E+3+1) ~ (T+3+3)

The Galerkin matrices are in general symmetric, but the
collocation matrices are not. Least squares was not used
since it has AZ terms.

After the matrices are formed the eigenvalue problem
is solved by IMSL library subroutine EIGZF which solves the

real eigenvalue problem G a = A H a for the real or
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complex eigenvalues and cigenvectors (Ref 7:EIGZF 1-5). The
routine reduces G to upper Hessenberg form and B to upper
triangular form. Then the rouiine transforms G to quasi-
upper triangular form (upper Hessenberg with no two con-
secutive subdiagonal elements being nonzero) while keeping
H in upper triangular form. Last, the routine calculates
eigenvalues and eigenvectors through an iterative operation
(Ref 10:241-255). The IMSIL routine includes a performance
index to evaluate how well the problem was solved and indi-
cates if the routine cannot converge to one of the eigen-
values (Ref 7:EIGZF 2-3).

The possibility of complex eigenvalues and eigenvectors
requires a strategy for reducing all eigenvalues to real
and the eigenvectors to real and linearly independent. The
eigenvalues of real symmetric matrices are real so the
Galerkin method should have all real eigenvalues and eigen-
vectors (Ref 15:24). The collocation method may have some
complex eigenvalues and eigenvectors due to its nonsymmetric
matrices. A useful approximation for complex eigenvalues
is the real part (Ref 4:739-740). Since complex eigenvalues
come in conjugate pairs with eigenvectors that are also
conjugates, taking the real part of the eigenvalue results
in a repeated real eigenvalue. Two linearly independent
eigenvectors are obtained by taking the real part cof the
eigenvector for one and the imaginary part for the cther

(Ref 9:228-230).
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After the eigenvalues and eigenvectors have been pro-
duced and made real and linearly independent, the initial
conditions are used to find the appropriate constant multi-
pliers for the eigenvectors. The multipliers are the Ck
of the Egqg. (70) form of the time function, Ai(t). The
procedure in the last two paragraphs has found the eigen-

values, A and the eigenvectors, aik' Now the initial

kl
condition of Eg. (65) is minimized with the same weight

functions to provide simultaneous equations for Cp- Sub-
stituting Egs. (70) and (67) into Eg. (65) and integrating

with a weight function, wj, yields

1 1

N N , -\, (0)
/w.(l-—x)dx + /w. I I -xhe a, e B
0 o O |i=l k=1 *
1
= /wj(O)dx (77)
0

where N different wj determine N different equations, where
the left side is the minimization of the trial solution of
Eq. (67), and where the right side is the minimization of
the initial value. Note time takes its initial value zero
in Eq. (77). The residual equation, Eq. (77), can be
rearranged to provide simultaneous equations for Ck by
exchanging the order of integration and summation:
1

N . .
C,|¥ I a. w.(xl - xl+l)dx
k . ik Jj

i=1

0
1

= —fwj(l-x)dx (78)

0
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Then the coefficients for C, are obtained by summing the

k
elements of the kth eigenvector multiplied by the integral
on the left side of Eg. (78). Eg. (78) then becomes a

matrix problem, M ¢ = m, where M is the coefficient matrix

of the left side of Eq. (78), where c is the vector of Chr
and where m is the vector of Eq. (78) right sides. Mc=m
is solved by Gaussian elimination for the multipliers, Ck’
and the solution is then complete.

The integrals of Eq. (78) are evaluated analytically
to provide recursion relations for M and m. For collocation

the recursion relations are

M(j,1) (79)

It
b
i
o)

(80)

It
b

§
[

m(j)

where M(j,i) is the integral of the (j,i) element of M,
m(j) is the jth element of m, and where xj is the jth of N
equally spaced collocation points. For Galerkin the

recursion relations are

1 2 1

M(j, i) G+i+l) ~ (3+i+2) + (3+1+3) (81)
2 1 1
m(3) = (3EEy T GET T 3 (82)

The finite difference solution for the transient prob-
lem will be constructed using an explicit four point method.
The differential equation, Egq. (64), will be approximated
with a first forward difference in time and a central dif-

ference in space:
34




Uy,ktl ~ Y5, . Yirx T %Ykt Y1k
t h2

where j is the index for mesh point location on x with uni-
form spacing of hx between mesh points and where k is the

index for time mesh spacing of ht between time 1levels
(Ref 15:107-108). ¢Solving for unknown temperature, U

j k+1l’
gives the explicit equation

U ger = R(Usup,p *+ Usop ) + (1= 2RI0 (84)

where R = ht/hi. Eg. (84) is used to solve for the tempera-

ture at a new time level repeatedly until the desired time
is reached. For the explicit method to be stable, the time
step size must obey the stability criteria ht < hi/z (Ref 15:
108). Since the difference expression error is O(ht) +
O(hi), obeying the stability criteria should r~sult in low
error with neither space nor time error dominating the total

error (Ref 15:108).
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IV Results and Comparisons

The results of MWR and finite difference solutions to
the two problems are compared with each other in this chap-
ter. The results are also compared with the article by
Houstis et.al. which compares MWR applied on finite elements
with finite differences (Ref 6).

The Houstis et.al. article compares collocation, Gal-
erkin, least squares, and finite differences for linear
second order elliptic partial differential equations. The
MWR methods used a rectangular grid to define the finite
elements and Hermite bicubic polynomials for approximation
of the solution. Solution of equations was by Gaussian
elimination by profile or frontal method. The article con-
clusions state collocation was more efficient than finite
differences for accuracy of one to four significant figures
and beyond. The measure of efficiency was accuracy of
solution and execution time. Finite differences and collo-
cation started with equal efficiency at low accuracy or,
in some cases, finite differences was most efficient at the
lowest accuracy. As accuracy increased collocation became
more efficient than finite differences after some crossover
point at one to four significant figures of accuracy.
Accuracy was obtained by measuring the erxror of the solution
at the nodes of the mesh used for the finite element and
finite difference statement of the problem (Ref 10::23-334).

The comparison of Galerkin and least squares methods

to collocation shows that collocation is always faster for
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equal accuracy with less of an advantage as finer grids are
used. The reason for the speed advantage of collocation was
attributed to its narrower band matrix than Galerkin or
least sguares. This advantage was true even though the sym-
metry properties of the Galerkin and least squares coeffi-
cient matrices were used to reduce solution time by half
with the Cholesky decomposition for band matrices (profile
method). For a given mesh size collocation was never more
accurate than the other methods. The main conclusion of

the article is that collocation is the best method of the

four for the class of problems examined (Ref 6:335-337).

Measurement of Accuracy

The measure of accuracy used for comparisons in this
study is the maximum absolute error. The maximum error
encountered in all points tested becomes the error of that
solution. Due to the uniform convergence properties of MWR,
the maximum error is expected to decline with more terms in
the trial solution as finite difference error declines with
mcre mesh points (Ref 8:263-265,273). The fractional error
has no such expectation. Fractional error is a measure of
the number of significant figures in the MWR or finite dif-
ference solution. Significant figures are equal to -log
(error/exact solution) where error/exact solution is frac-
tional error (Ref 6:333). Since fractional error depends
on the value of the exact solution as well as the error at a
point, it will not be used to compare efficiency between

methods.
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Fractional error has been used by Houstis et.al. as a
characteristic of solution comparisons. After finding the
crossover point for finite difference and collocation a
characteristic number of digits is assigned to describe the
solutions at that point. At the crossover point, maximum
error and execution time are approximately equal with colilo-
cation obtaining greater accuracy in less time after the
crossover point. The number cof digits assigned to the
crossover point is -log(maximum error/maximum solution size).
This number of digits is clearly an optimistic estimate of
the number of significant figures in the solution since the
fractional error of the marimum error is computed at the
largest value of the exact solution instead of where the
maximum error occurred (Ref 6:333).

The absolute error must be measured at a number of
pcints in the domain to find the maximum error. Houstis et.
al. measured the error at the nodes or intersections of the
finite element grid (Ref 6:332). These are the mesh points
of finite difference for a grid of the same size. Since no
finite element mesh is used for the problems considered
here, the finite difference points will be used for compar-
ison. For collocation these points are the same as the
collocation points. Then for an N term expansion of the MWR
trial solution, the error will be measured at N equally
spaced points, initially. A more extensive invastigation
of the MWR solutions will be made at 99 points throughout
the domain of the problem to check the error obtained at

the finite difference mesh points.
38
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Steady State Problem

The solution to the steady state problem is shown in
Figure 1. The exact solution is shown in comparison to the
one term and two term collocation solutions. The conver-
gence of the MWR solutions to the true solution is rapid
with successive expansions approximating the true solution
more closely.

In order to compare the maximum error of the MWR and
finite difference solutions, 20 different solutions were
computed for each MWR method and finite differences. Each
MWR method used solution expansions ranging from one to 20
terms. The finite difference solutions ranged from one to
20 mesh points. The results of maximum error and execution
time measurements are tabulated in Table I and Table III
through Table V in Apnendix A. The results are also pre-
sented graphically in Figures 2 and 3.

Figure 2 shows the maximum absolute error obtained by
measurement at the finite difference mesh points for all
four methods compared. The one term expansions of MWR were
compared with the true solution at one point. The two term
expansions were compared at two points and so on. The
maximum error is plotted against execution time for 100
executions of each solution. Each symbol represents a dif-
ferent solution with a different number of terms or mesh
points. The one term and one mesh point solutions are at
the top of each line. The three MWR methods performed

similarly. Galerkin was slightly faster than least squares
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and collocation in the maximum error range around 10-3 to

~5 with least squares approaching Calerkin below 107 °.

10
Collocation continues slower than Galerkin or least squares
at smaller errors. The finite difference solutions shown in
Figure 2 are much slower to a given maximum error than the
MWR methods for errors less than 5x10-4. A characteristic
number of digits accuracy can be assigned to the crossover
point for this problem at between 10_3 and 7x10_4 maximum
error. Since the maximum solution size for this problem is
.071, the digits of accuracy for the crossover is between

1.8 and 2.0. This accuracy is a very optimistic estimate

of the accuracy of the solution. TFor a point other than the
crossover different accuracies require widely varying running
times by different methods. At maximum error of ’/'xlo—5 or
3.0 digit accuracy, finite differences takes twice as long

as the MWR methods.

Figure 3 shows maximum error plotted against execution
time for 100 executions when maximum error is determined by
sampling the MWR solutions at 99 points. The absolute
error of each solution was measured at the same 99 equally
spaced points throughout the domain. fThe finite difference
comparison at the mesh points of Figure 2 is included for
reference. Although the maximum error measured for MWR
solutions of a few terms is a few to several times higher
for 99 points then for the finite difference points, the
difference is small for solutions of 10 terms or more. The

efficiency and relative efficiency of the MWR solutions is
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almost the same for measurement at the 99 points as the
finite difference points.

The Houstis et.al. article found collocation to be
faster to a given accuracy than Galerkin or least squares
for MWR applied on finite elements (Ref 6:335-337). In this
formulation of MWR on the whole domain and for this problem,
Galerkin is faster than either least squares or collocation.
Also least squares is faster than collocation. The numeri-
cal integration used for Galerkin and least squares in MWR
on finite elements and the resulting coefficient matrix may
be the reasons for the different behavior. As indicated in
the Houstis article, the numerical integration for MWR on
finite elements requires evaluation of the integrand at nine
places where collocation requires evaluation of the residual
at only four points (Ref 6:336). The resulting equations
produce coefficient matrices which take longer to solve for
Galerkin and least squares than collocation (Ref 6:336).
MWR on the whole domain as used in this study has neither
of these two hindrances. The integrals are done analytically
to develop recursion relations for matrix formation. The
resulting matrices have all non-zero elements and are all
solved by the same method so solution times are close to
the same. Galerkin and least squares were observed to be
more accurate for a given mesh size than collocation by
Houstis et.al. (Ref 6:336). Apparently the greater accuracy
of Galerkin and least squares results in less error for a

given number of terms in the expansion than collocation.
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Then the very close solution times result in smaller maximum
error for Galerkin than for collocation.

Table I shows some of the values presented graphically
in Figure 2 and Figure 3 for collocation. The maximum abso-
lute error decreases with more terms in the trial solution
until a minimum error is reached at 11 or 12 terms. After
that point the error fluctuates and gradually grows.
Galerkin and least squares exhibit similar behavior at
eight or nine terms in the trial solution for minimum error.
This behavior occurs well below the region of comparison of
Figures 2 and 3. Galerkin and least squares error are
tabulated in Table III and Table IV of Appendix A. All

=12 ¢ less.

three solutions attained minimum errors of 10
There are three possible explanations for the behavior

of maximum error. The first explanation of convergence to

some solution other than the true scolution is not valid.

If the three methods converged to the wrong solution, maxi-

mum error would decrease to some minimum value and not grow.

A second explanation is low accuracy of the Gaussian elimi--

nation solution of the simultaneous equations. A successive

over-relaxation iterative method was used to improve the

Gaussian elimination solution (Ref 15:126-129). A relative con-

~20 was used to test for convergence of

vergernice test of 10
the iterations. For collocation the successive over-rclax-
ation gave greater error for some trial solutions and failed
to yield a solution for others. For Galerkin and least

squares, however, the method worked. Several solution con-

stants changed value in the 10th to 11lth significant figures.
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TABLE I

Error and Time for Collocation on the
Steady State Problem

Maximum Absolute Error

Time for
100 Executions

Number of Terms At
in the Collocation At 99

Trial Solution Points Points (seconds)

1 1.68E-3 9.69E-3 .18

. 2 7.09E-4 8.06E-4 .21
3. 4.87E-5 7.06E~5 .25

4 3.23E-6 3.38E-6 .30

5 1.96E-7 2.38E-7 .37

6 7.73E-9 7.93E-9 .45

7 4.08E-10 4.65E-10 .53

8 1.16E-11 1.18E-11 .62

9 5.35E~13 5.50E-13 .71

10 1.46E-14 1.88E-14 .85

11 3.77E-15 6.77E-15 .98

¢ 12 5.77E-15 6.55E-15 1.11
\ 13 8.44E-15 9.77E~15 1.25
‘ 14 4.22E-15 5.33E-15 1.42
15 6.22E-15 7.11E-15 1.62

i 16 6.22E-15 6.66E-15 1.81
‘ 17 4.85E-14 4,88E-14 2.01
18 2.29E-14 2.49E-14 2.23

19 5.77E-14 5.99E-14 2.45

20 1.38E-13 1.38E-13 2.65

-X
Note: E-X means 10 .
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The maximum errors of the solutions in Tables III and IV
remained the same to three significant figures yielding
Tables III and IV again. Since the growth in the error was
up to two orders of magnitude, poor accuracy of the Gaussian
elimination does not explain the behavior of maximum error.
The last explanation of the maximum error behavior is the
trial functions themselves. Babuska et.al. find these

trial functions numerical unstable for the MWR in their
study of stability in optimal trial functions (Ref 14:241-
245) . By studying the solution of the simultaneous equa-
tions based on these trial functions, they conclude they are
unstable for seven or more terms in the trial solution. The
solutions with more than seven terms have errors which
increase, not decrease. Babuska et.al. conclude these trial

functions should not be used for computer solutions.

Transient Problem

The transient problem was solved by the reduction to
ordinary differential equations method of MWR and by an
explicit finite difference method. The MWR on the whole
domain produces a series solution that may be evaluated for
any time or position in the domain. The explicit finite
difference method, however, produces the solution for a
succession of times up to the fiﬁal time considered. For
the comparison of the methods in this study, only the maxi-
mum absolute error at specified dimensionless times will be

used.
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Several points within the space domain were used to
compare an approximate solution and the exact solution. The
finite difference solutions were found for 10 to 100 mesh
points in increments of 10. The finite difference mesh
points were used to determine the maximum absolute error of
that solution. The MWR solutions used successively more
terms and solutions with 1 to 20 terms were calculated. The
MWR solutions were compared at the collocation points for
the steady state problem. Since most of the finite differ-
ence solutions in the transient problem were compared at
more than the maximum number of collocation points, all the
MWR solutions will be compared at 99 equally spaced points
for a comparable search of the domain.

The solutions were compared at three times. Figure 4
shows the exact solutions at t = .05, .10, and .15. Note
that the solution for t=.05 1is close to zero for a larger
fraction of the domain than the others and represents the
earliest time response of the solution. The solution for
t=.15 represents the latest time response when the solution
is close to the steady state solution.

The maximum absolute error for the three solutions is
plotted as a function of solution execution time in Figures
5 through 7. All solutions were executed 100 times for a
more accurate measurement of the time. Only collocation
and Galerkin MWR methods were us ~ jalerkin was always
faster to a given accuracy than collocation as in the

steady state problem. Both the Galerkin and collocation
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methods were faster to a given accuracy than explicit finite
differences after a crossover point where MWR and finite
differences achieved equal accuracy in equal time. The
crossovers occurred at accuracies of 2.5 to 3.2 digits based
on the maximum absolute error and maximum solution size of
1.0. The crossovers represent very optimistic estimates of
accuracy. All methods showed improved accuracy for t=.10
and t=.15 over t=.05. Collocation improved the most and
finite differences the least. The crossover point for
collocation and finite differences changed from 3.2 digits
at t=.05 to 2.6 digits at t=.15. The Galerkin and finite
differences crossover remained more nearly constant by
changing from 2.7 digits at t=.05 to 2.5 digits at t=.15.
Collocation lost more of its advantage over finite differ-
ences at the short solution time t=.05 than did Galerkin.

An explanation for the better showing of Galerkin over
collocation is the complex eigenvalues found for colloca-
tion. The Galerkin matrices in the eigenvalue determina-
tion part of the solution process were symmetric, while the
collocation matrices were not. For conllocation complex
eigenvalues were first found for the five term expansion of
the trial solution and expansions for more terms also had
complex eigenvalues. Since only.the real part of a complex
eigenvalue was used as an approximation in the solution,
some accuracy was lost. Accuracy was also lost for the
Galerkin method due to negative real eigenvalues. These

negative eigenvalues produced positive exponential functions
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of time which grew instead of decayed with time. Since the
negative eigenvalues produced functions which were not a
physically real, decaying transient solution, those eigen-
values were set to zero. The negative eigenvalues first
occurred for the 11 term Galerkin solution and for all
solutions with more terms. Thus, the effect on accuracy

of the negative eigenvalues for Galerkin occurred at finer
approximations than the complex eigenvalues for collocation.

An explanation fcor the poorer showing of both MWR
methods at the t=.05 time is the shape of the true solution
at that time. The true solution there is close to zero for
a greater fraction of the domain than the other two times.
Since the true solution is close to zero for that longer
fraction of the domain, it is harder to approximate by a
polynomial. More terms and more solution time are required
for a given accuracy or maximum absolute error.

Table II shows the maximum absolute error and execu-
tion times for collocation solutions at the three dimension-
less times. Note that the maximum absolute error stops
decreasing and starts growing for solutions of 13 or 14
terms. The error for Galerkin also grows starting at 13
terms in the solution as shown in Table VI of Appendix A.
Since the same space trial functions were used for the solu-
tion expansions in the steady state and transient problems
and since similar growth in error occurred in the steady
state problem, this growth in error can be attributed at

least partially to the numerically unstable trial functions

54




—— —————

Error

TABLE I1I

and Time for Collocation in the
Transient Problem

Maximum Absolute Error

Number of Terms Time for
in the 100 Executions
Trial Solution T=,05 T=.10 T=.15 (seconds) !
1 7.69E~2 1.39E-2 1.21E-2 .90
2 2.76E-2 1.75E-2 1.15E-2 1.34
3 2.17E-2 6.15E-3 1.92E-3 2.11
4 6.66E-3 1.67E-3 7.68E-4 3.07
5 2.79E-3 5.55E-4 1.63E-4 5.22
6 2.24E-3 7.37E-5 3.89E-5 8.13
7 4.57E~4 3.69E-5 8.09E-6 10.69
8 1.95E-4 5.33E-6 8.71E-7 14.76
9 3.88E-5 1.71E-6 3.01E-7 19.46
10 1.51E-5 3.87E-7 1.88E-8 26.89
11 4.91E-6 B8.98E-8 B8.86E-9 34.20
12 1.24E-6 2.07E-8 7.07E-10 38.95
13 4,52E-7 4.13E-9 8.43E-10 47.26
14 7.82E~-8 1.40E-8 8.83E-9 60.19
15 l1.16E-7 6.38E-8 3.87E-8 72.17
16 5.35E-7 2.67E-7 1.60E-7 82.23
17 2.48E-6 1.53E~6 9.33E-7 -
18 9.07E-6 2.06E-6 8.51E-7 -——
19 3.74E-5 2.36E-5 1.44E-5 -
20 2.35E-2 4.34E-3 8.00E-4 -

Note: E~-X means 1o‘x.
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(Ref 14:241-245). No iterative improvement of the final
solution was attempted, however.

An implicit finite difference method was used to see
if the solution time could be shortened from the explicit
method. Using a time step, ht = hi, where ht is the time
step size and where hx is the space mesh spacing to minimize
the finite difference error, 0(h.) + 0(h2) (Ref 14:108).
The resulting execution times were several to 100 times
greater than for the explicit solutions with slightly higher
maximum absolute error. The largest increase in solution
times occurred for the finest mesh spacing where the largest
full matrices were solved for a new temperature more times
than the smaller matrices for larger mesh sizes.

No direct comparison with the Houstis et.al. article
is possible for the transient problem since that article
treated only steady state problems on finite elements
(Ref 6). It is interesting to note that the Galerkin
method proved faster to a given accuracy than collocation
for both problems in this study while collocation was fastest

for the MWR on finite elements of the Houstis et.al. article.
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V Conclusions

In this chapter conclusions of the investigation of
MWR on the whole domain and finite differences for solution
of the heat equation will be presented. Also, recommenda-
tions for the improvement of the MWR methods used in this
study and application of finite element methods to heat
problems of éxial symmetry will be presented.

Two, one dimensional problems of heat transfer were
solved by the MWR on the whole domain of interest and by
finite differences. One problem represented steady state
heat transfer and the other transient heat transfer. Both
problems used Dirichlet boundary conditions where the value
of temperature was specified on the boundary. MWR methods
for the steady state problem were collocation, Galerkin,
and least squares. The least squares method was not used
for the transient problem since it complicated the solution
process. The finite difference formulation was implicit
for the steady state problem and explicit for the transient
problem. The integrals of the Galerkin and least squares
methods were evaluated analytically to obtain recursion
relations for MWR solution. All solutions were compared with

the true solution to obtain maximum absolute error.

Conclusions and Limitations

The Galerkin method was fastest to a given accuracy
or maximum absolute error of the methods evaluated. The

crossover point for Galerkin and finite differences where
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both had equal accuracy in equal time occurred at 1.8 to 2.0
digits of accuracy for the steady state problem and 2.5 to
2.7 digits for the times evaluated in the transient problem.
The Galerkin method had greater accuracy than finite dif-
ferences in equal time after the crossover point. The
digits of accuracy are an optimistic estimate of the number
of significant figures in the approximate solution based on
the maximum absolute error occurring in the whole domain
and the maximum value of the true solution. The digits of
accuracy indicate that finite differences is only faster for
rather crude accuracy and Galerkin and the other MWR
methods are faster for greater accuracy. The speed margin
is sizeable. The time required to increase one digit of
accuracy beyond the crossover point for the steady state
problem is half as long for Galerkin as for finite differ-
ences. The Galerkin method is the best of methods evalu-
ated to use for problems of this type when accuracy greater
than two or three digits is required.

Some limitations to the conclusion of the previous
paragraph must be noted. First only Dirichlet boundary
conditions were used for the two problems evaluated. Other
boundary conditions may be evaluated by finding trial func-
tions which satisfy them or by minimizing the boundary
residual along with the differential equation as shown in
Eq. (10) of Chapter II. However, the conclusion of the
last paragraph cannot be extended to other boundary condi~

tions without some evaluation of problems with the other
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bouwrtary conditions. Another limitation is constant thermal
conductivity. Constant thermal conductivity throughout the
whole domain was assumed to reduce the heat equation to a
dimensionless form. Problems involving varying thermal
conductivity should be evaluated to see if Galerkin is the
best method. A third limitation is the one dimensional
cartesian coordinate geometry of both problems evaluated.
Before assuming that Galerkin is always fastest for axial
symmetry or two dimensional problems on the whole domain
problems in those geometries should be evaluated. The last
limitation is the method of integral evaluation used for
the Galerkin and least squares methods. If a numerical
rather than an analytical integration were used, the solu-
tion times and, therefore, the speed advantage of those two
methods could change.

A major drawback of the Galerkin and other MWR methods
on the whole domain in the problems evaluated is the poly-
nomial trial functions. These trial functions were seen to
be numerically unstable for solutions with 10 or more terms.
The maximum absolute error increased not decreased for
solutions with more than 10 terms or so. If heat generation
terms complicated the shape of the temperature distribution,
more terms could be needed in the MWR solution to approxi-
mate it. If more than 10 terms were needed, MWR might be
limited to low accuracy and be slower than finite differ-
ences. A new approach is needed to avoid the drawback of
the linearly independent but numerically unstable polynomial

trial functions.
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Recommendations

The orthogonal collocation method could solve the prob-
lem of numerical instability (Ref 3:357). It is recommended
for steady state problems. Orthogonal collocation uses
trial functions composed of orthogonal polynomials and
collocation points defined by the roots of the highest
order polynomial. The method can be made to fit other bound-
ary condition than Dirichlet and is valid for planar, cylin-
drical or spherical geometry. The method can solve problems
in terms of the values of the function approximated at the
collocation points. This ability allows great flexibility
as well as computational ease in problem solution. Ortho-
gonal collocation has been shown to be as fast as the other
MWR methods for a given accuracy (Ref 3:97,100).

As an example consider a one-dimensional cylindrical
symmetry steady state heat transfer problem where tempera-

ture varies only with the radius:
v2U(r) + g(r)u(r) = £(x) (85)
0 crc<1l

where U(r) represents dimensionless temperature and where
g(r} and f(r) are functions defining heat generation. The

problem can he formulated as symmetric in r:
vZur) + grHu = £(?) (86)

Then the trial solution for such a problem can be iforrulated

for Dirichlet boundary conditions at r=1 as
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U(r) = U() + (1-r?) a.P, . (r?) (87)

iti-1

o

i=1

. . 2 .
where ai is an undetermined constant and Pi— (r”) is an

1
orthogonal polynomial. The Pi_l(rz) are defined starting

. . . 2
with a power serilies in r~ as

1
2 2 2 _
vlﬂw(r )Pj(r )Pi(r Jr dr = CiGij (88)
0
for j=1,2,...,1~-1 where w(r2) is a weight function, dij is
the Kronecker delta function, and Ci some constant. Thus each

polynomial in the trial function of Eg. (87) is made ortho-
gonal to the others with the weight function, w(r2). The
roots of the polynomials may be found for a given weight
function. Weight function (l—r2) or 1 may be used for this
probiem. The polynomial roots for these weight functions
have been tabulated (Ref 3:99,101-103).

For solution the trial function must be converted to
an ordinary polynomial and matrices found to relate the
values of temperature to the derivatives in the problem.
Since PN_l(rz) is a polynomial of degree N-1 in r2, then
the trial function can be represented as a polynomial cf

degree N in r2:

+
U(r) = ¥ d.r (89)

where di are new constants. Evaluating the derivative and
Laplacian of temperature at the collocation points plus

r=]1 for the N+1 collocation point yields matrices to relate
temperature and derivatives to the constants di:

61

R ——




Ulr.) = ¥ x2i724 (90)
i=1 .
as)  _ Mptar?itfo (o1)
dr . dr i
i=1
r. r.
J J
N+1 .
v2u = 3 vie?iT?) g, (92)
r. i=1 r. *
J J
_ . _ . du _
In matrix form Eq. (90) is U = Q@ d, Eq. (91) is g- =C d,

and Eq. (92) is V°U = D d. The derivative and Laplacian
can now be formulated in terms of the temperature at the

collocation points:

du _ -1

a ° cQ "~ u (93)

v?u = polu (94)
The expressions of Eg. (93) and (94) may be substituted
directly into a differential equation such as Eg. (86) to

produce a matrix problem for temperature at the collocation

points. Then the temperature at the collocation points may

be used to solve for the constants, di’ in the trial solu-

tion. An additional condition needed for solution of Eq.

(86) is the temperature at r=1 or U(rN ) = U(l). Other

H

boundary conditions can be solved for Ulr ) and included

N+1
in the solution for temperature (Ref 3:100-101).

Another method which should be evaluated in future
research is the MWR on finite elements for problems of axial

symmetry. MWR on finite elements has been shown to be
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faster to a given accuracy than finite differences for
steady state problems similar to the heat equation in two
dimensions (Ref 6:336}). Finite elements methods use piece-
wise continuous trial functions of a fixed number of terms.
Accuracy 1is increased by increasing the number of elements
covering the domain of the problem and not the number of
terms in the trial function.

Problems of axial symmetry use volume finite elements
defined in the two variables r and z. Axial symmetry is
described by a cylindrical coordinate system where tempera-
ture or boundaries do not vary with the angular coordinate
of the cylindrical coordinate system. The domain of the
problem is then divided into finite element rings with
cross section and trial functions described by r and z
coordinates of the cylindrical coordinate system. For inte-
grations involved in the MWR the volume of the finite ele-
ment ring must be used. Various shape elements may be used
with the appropriate trial functions to element shape and
order of the polynomial trial function used. The trial
solution is expressed as in orthogonal collocation as a
function of parameters at specific nodes or points on the

element:
U = I N. a. (95)

where U is the function approximated such as temperature,
Ni are the trial functions called shape functions in finite

elements dependent on the shape and order of polynomial
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aprroximation, and where a, are the nodes determined by ele-
ment shape and shape functions (Ref 13:119-120,148-177).

The MWR statement of the steady state heat transfer
problem minimizes the combined residual of the differential
cquation and boundary conditions of second and third kind
to produce a matrix statement for solution of the nodal
parameters, a,. When the matrix equations are solved the
solution is complete. The matrix equations are of the form
Ha+ f =0 where H is obtained by numerical integration
of the integrals involving a and where f is obtained from
integrals not involving a (Ref 13:424-426). The method of
combining contributions to the H matrix from each finite
element of the domain results in a banded, sparse matrix
which is faster to solve than the full matrices of MWR on
the whole domain (Ref 13:14-15).

The transient heat transfer equation may be treated in
the same manner by MWR to produce ordinary differential
equations in time. The matrix formation is then of the
form C & + H a + £ = 0 which may be solved by methods simi-
lar to those used for the transient problem in this study.
A step by step recurrence calculation for a; similar to
finite difference methods for the transient problem is also
possible and more general (Ref 13:569). 1In the step by step
method shape functions are chosen to describe the variation
of a from the beginning to the end of a time element,

a = n;l N, a;- The MWR is applied to the whole matrix

. i
i=n
formulation of the problem with the time derivatives acting
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on the shape functions. The resulting equation is then
reduced to yield a recurrence relationship for 8,41 @S @
function of a,- Thus the solution can be produced in a
step by step basis as for finite differences (Ref 13:570-572).
Evaluation of the finite element methods described here
should provide a better and more general test of MWR for

heat transfer problems of axial symmetry.
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Appendix A: Error and Solution Time Tables

This appendix contains tables summarizing the maximum
absolute error and solution time for MWR and finite differ-
ence solutions of the steady state and transient heat

transport problems.
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TABLE III

Error and Time for Galerkin on the
Steady State Problem

Maximum Absoclute Error

Number of Terms At Finite
in the Difference At 99

Time for
100 Executions

Trial Solution Mesh Points Points (seconds)

1 3.03E-4 8.35E-3 .18
. 2 1.49E-4 3.04E-4 .20
3 1.87E-5 2.57E-5 .23
4 5.22E-7 5.88E-7 .27
5 3.30E-8 3.74E-8 .30
6 6.19E-10 6.40E-10 .36
‘ 7 2.89E-11 3.21E-11 .42
‘ 8 8§.10E-13 8.14E-13 .46
{ 9 5.43E-12 5.52E-12 .52
i 10 2.29E-11 2.50E-11 .58
{ 11 3.80E-11 3.80E-11 .67
{ 12 4.60E-11 4,75E-11 .75
13 3.72E-11 3.78E-11 .81
?" 14 1.71E-10 1.74E-10 .91
i 15 1.69E-10 1.81E-10 1.00
l6 6.45E-11 6.68E-11 1.12
17 6.13E-11 6.34E-11 1.25
) 18 1.36E-10 1.41E-10 1.37
19 9.86E-11 1.09E-10 1.47
20 1.03E-10 1.17E-10 1.62

\ Note: E-X means 10'x.




TABLE IV

Error and Time for Least Squares on the
Steady State Problem

Maximum Absolute Error

Number of Terms At Finite Time for
in the Difference At 99 100 Executions
Trial Solution Mesh Points Points (seconds)
1 1.68E-3 9.06E-3 .19
2 1.42E-3 1.68E-3 .20
3 7.80E-5 7.90E-5 .24
4 1.33E-6 1.85E-6 .28
5 9.60E-8 9.87E-8 .35
6 1.33E-9 1.68E-9 .39
7 7.53E-11 7.84E-11 .49
8 9.94E-13 1.06E-12 .55
9 4.56E-13 4.84E-13 .65
10 8.58E-13 8.77E-13 .75
11 3.96E-12 3.98E-12 .86
12 2.71E-11 2.73E-11 .97
13 1.01E-11 1.03E-11 1.09
14 2.76E-11 3.14E-11 1.23
15 1.29E-11 1.31e-11 1.35
16 3.94E-11 4.12E-11 1.53
17 7.41E-11 7.48E-11 1.71
18 2.09E-10 2.40E-10 1.84
19 6.44E~-11 6.73E-11 2.05
20 3.65E-11 3.778-11 2.22
Note: E-x means 10 ~.
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TABLE V

Error and Time for Finite Difference Method

Number of Terms

in the
Trial Solution

on the Steady State Problem

Maximum Absolute Error

At Finite
Difference
Mesh Points

WoOoJauUtds wN -

Time for
100 Executions
(seconds)

1.68E-3
7.09E-4
4.09E-4
2.64E-4
1.81E-4
1.35E-4
1.02E-4
8.17E-5
6.58E-5
5.46E-5
4.58E-5
3.90E-5
3.37E-5
2.92E-5
2.58E-5
2.28E-5
2.04E-5
1.83E-5
1.65E-5
1.50E-5

Note: E~-X means 1o‘x.
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.26
.23
.26
.32
.36
.43
.47
.54
.60
.66
.76
.84
.89
.98
1.09
1.20
1.32
1.41
1.53
1.67




TABLE VI

Error and Time for GCalerkin in the
Transient Problem

Number of Terms
in the

Maximum Absolute Error

Time for
100 Executions

Trial Solution T=.05 T=.10 T=.15 (seconds)
1 5.39E-2 1.45E-2 6.18E-3 .91
2 1.92E-2 9.86E~3 5.65E-3 1.33
3 6.60E-3 1.56E~3 3.76E-4 1.99
4 1.19E-3 2.25E~4 1.34E-4 2.96
5 4.52E-4 6.98E-5 1.08E-5 4.57
6 1.09E-5 3.00E~6 1.53E-6 7.03
7 1.43E-6 2.41E~-6 3.38E-7 9.51
8 7.01p-7 9.92E~-8 1.32E-8 12.18
9 4.82E-7 5.53E-8 7.65E-9 16.01

10 3.84E-7 6.81E-9 2.24E-9 20.32
11 5.76E-8 5.45E-9 1.98E-9 24,80
12 1.70E-7 2.07E-9 4.44E-10 31.10
13 3.95E-8 1.35E~9 2.21E-10 38.47
14 8.13E~-7 4.04E-8 2.80E-9 42.69
15 1.90E-7 1.26E-8 9.78E-10 50.99
16 4,188-7 2.66E-7 1.68E-9 59.39
17 6.27E-7 1.71E-7 4.20E-8 68.25
18 5.75E-7 1.41E-7 4.62E-8 77.08
19 5.94g-7 1.41E-7 3.00E-8 -—-

20 1.11E-5 ©5.83E-6 3.09E-6 -

Note: E-xX means lO_X.
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TABLE VI

I

Error and Time for the Explicit Finite Difference
Method in the Transient Problem

Number

Mesh Points

10
20
30
40
50
60
70
80
ae
100

T=.05
Time for
of Maximum 100 Executions
Absolute Error (seconds)
1.10E-2 .69
2.74E-3 1.77
1.28E-3 3.96
7.30E-4 7.66
4.72E-4 13.45
3.31E-4 21.59
2.44E-4 32.81
1.88E-4 47.00
1.49F-4 65.45
l1.21E-4 88.21
Note: E-X means 107% T is the
dimensionless time variable.
TABLE VIII

Error and Time for the Explicit Finite Difference

Number

Mesh Points

10
20
30
40
50
60
70
80
90
100

Method in the Trans

ient Problem

T=.10
Time for
of Maximum 100 Executions

Absolute Error {seconds)
5.13E-3 .85
1.41E-3 2.69
6.53E-4 6.73
3.73E-4 13.71
2.41E-4 24.62
1.69E-4 40.46
1.25E-4 62.44
9.58E-5 91.17
7.59E-5 127.52
6.16E-5 -

Note: E-x means 10

X, T is the

dimensionless time variable.
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TABLE 1X

Error and Time for the Explicit Finite Difference
Method in the Transient Problem

T=,.15
Time for
Number of Maximum 100 Executions
Mesh Points Absolute Error ____(seconds)
10 3.65E-3 1.02
20 1.02E-3 3.55
30 4.69E-4 9.25
40 2.68E-4 19.57
50 1.73E-4 35.56
60 1.218-4 58.99
70 8.96L-5 91.43
80 6.88E-5 135.13
90 5.45E-5 —_—
100 4.,43E~-5 ———

Note: E-x means 10 %. T is the
dimensionless time variable.
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Appendix B: Computer Programs

This appendix contains the computer programs for the
steady state and transient heat transfer problems. Both

the MWR and finite difference solutions are included.




Steady State Comnuter Progr

YI(INPUT,GUTPLET)
CCEF(Z0,20),RS(Z0) »WKAREA(20),7D(20)

te T3

[ SRR SR 0N w BN
o

Z e

=‘\+1 .
M(CCZF RS, WKARZAL N, IDIM,ICRIT)
Ll C:MP (A (RSN, IDIM)
FDSM(CCIF,FDrAKAREANL,IDIM)
CG.PFD(FD N1,IDIM)

T T
e

EM(CCEF G, KXANEALN, IDINM, ICRIT)
G CFEF(ID
N A(20,20).X1020),YV(20)

1

cowmnmmMmooOrr M

PRINT®.
PRINT4,"
PRINTs,"
PRINT#," MY S0LN FOR ",N," TERM EWPANSION "
PICX METHGD
if (ICRIT.EQ.1) GO TO
GO 70O 20
i PRINT#," COLLOCATIGN "
CALL CCL(CCEF,RS/N,IDINM)
IF (ICRIT.23.2) GO 70 2
GO TO 30
PRINT#," GALLERKIN "
CALL GAL(CCEF,RS,N,IDINM)
"""" .cG.3) GO 70 3
G2 TO 40
PRINT#," LZIAST SQUARES "
CALL LS(ZCEF,RS,N,IDIM)
PRINT RZSULT OF CALL
PRINT#," RIGAT SIDE VECTCR=
PRIMT=," COZr MATRIK= °®
D@ S J=1,N
DO 100 KX=1.,N
A{J,XX)= COEF(J.KK)
Y{J)r= RE(NH
CONT INUE
FIND SOLN CONSTENTS
M=t
IDGT
CALL LEQTIF(CCORF,FL,N,IDIM/RS,»IDGT,WXAREA,IER)
PRINT#*," IER= ",IER
IF (IER.NZ.34) GO 70 59
PRINT#," EXACT METHCD SO_N CONSTANTS=
PRINT2, (" AC",Jy")= ",RE(J),J=1,N)
SORCON= 1.0E-B
A6 EC J=1eN
LI(Jt= RS()

100

S
c

n

60
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rem1.0

CALL SCRIA/KIIRS Y wAAREAN: IDINALP, SORCON)

CoVTINUZ

ARINTE," "

FRINT#," SOLN CONSTANTS
FRINT®,(" A("4dy")= "y REJ1J=1:N)
PRINTH," "

RETUAN

UTINnS TCZL(CLEFRS/INSIDIM)
SIMEINEION COEF(IDIM.IDIM),RS(IDIM)
LL X5 VZICTOR

DX= 1.0/7(N+1)

DO ! J=1.N

RE(J)= DXxJ

LL CCzZF MATRIR

DG 2 J=1.N

DO 2 i=1.,N

K= Dixd

COEF(J,Id= (I2(I+1)x(Xea#(I-1)))+(X##(I+1))-(X#x])

= (Is(i-10#(Xe(I-200)
CCNTINUE

RETURN

END

SUBRCUTINI GAL(COZF,RS/(N,IDIM)
DINZNSICON CCEF(IDIM,iDIM),RS(IDIM)
LL RS VECTOR

DO 1 J=1.,N

RS{JY= 1.0/70(J+2)%(J+3))

LL COZF MATRIXK

20 2 J=1.,N

DO 2 I={N

COEF(J,10= (1.0%({(I+1)#D)+(I#(I-1) )12/ CJ+1))} + (Z2.0/(J+I+2))

1 - (1,0/¢3+143)) (1. 0»21#(I-1)/7(J+I=-1D)- (1.0 ((I#(I+1))+1)/(J+1+1))

T = (L0030 (e (=1 +(dx(J+ 1)+ DI+ (I (I-1))) /(1))
2 4+ (1,0#¢(Ia(T+1))+1.04(J2(J+1)))/(J+I4+1)) + (1,0/CI+0+3))

o0
c FiI
1
C FI
1
2
C FI
1
C FI
2
C F1i
1
C FI
i1
3
4
20

CONTINUE

END

SU3ROUTIME LS(COEF,RS/N,IDIM)
DIMEZNSICN COEF(IDIM,IDIM),RSCIDIM)
LL RS VECTOR

B0 1 J=!,N

RS(J)= 1.0 - (1.0/00J4+2)%(J+3)))
LL COEF MATRIX

DO 2 J=1,N

DO 2 I=1,N

IT ((I+J).26.3) GO TO 11

GO 70 20

COEF(J 1= (L 02 €(a =10+ (0 (J+ 1) #I#(T+1) )+ (I (I-122)/(1+d~1))

= (2.0/(1+J+2))

= (1,0l (Ja(J-1)#I#(I+ 1))+ (T2 (I=-1)adx(J+i)))/(1+0~-2))

GO TO 90
IF ((I+4J),EQ.2) GO TO 21
GO 70 30
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.
4

30 COEF(J,1)=

r3w
o

C COMPAREZ AT MISH
PRINT#," ERROR OF Mwi AT

30

31

50
50

10

AT SIS

™~

COZF(J I)= (2.0 (3 (J=2)#]#(1-1))/(1+J=-3)) = (2.0/(1+J+2))
+ (1.0*((J*(J-l))*(J*(J*i)*x"’fl/)*(1%(Y—I)))/(I+' DD

3 = (L0 00x(U=-2)ir(Je( o+l
4

AN I DR EIOEISESDRRVASERAD!

+ (L. OR((ra(I+0) )+l O+(J*(J*A)))/(J+A’.)) + (1.0/(I+4+3))

GO TG 80

CONTINUE

CONTIMLE

RETURN

END :

(1.0 (I (J-1)#Ix(I-1))/(1+J=-3)) = (Z.0/(1+J+2))
S O (- ¥ I (Tl )+ (I (1000 (24 1))/ (I+U-2)1

v (1.0 (O (=1 N+ (I G+ DR IR I+ D)+ (IR (I=1)3)/(1+0-1))

= L 0% UL (U= )+ 0+ T D+ (T (T4 1T I-1) 1) /L I+d))

L0 (I (I+1))I+1.0+(J2(J+1) D)/ (0+T+1)) + (1.0/7(1+4J+3))

SUBRGUTINE COMPMW(RS:N,IDIM)

DIMENSICN RSLIDIM)

ITOL=0

M=N

DX=1,0/7(N+1)

GO 7O 59

IF {:70L.2G.1) GO TO 31
GO 706 40

M=39

DX= .01

PRINT*," ERRIRS FCR KHDL
GO TO S0

IF (I70L.EQ.2) RETURN
ERR¥= 0.0

FERRM= £.0

XME=0.0

XMF=z 0.0

Do 1 J=1.,M

X= DMxJ

Y= (SIN(XN/SIN{L.0)) - X

¥M= 0.0
b0 10 I=1,N

POINTS/COLLDCATICN POINTS

25" POINTS Or FD CR COLLCCATION POINTS™

E REGION AT 88 POINTS

VM= YM + (RE(DI#((X#])—(X##(T+1)}))

ERR=Y-YM
FERR=ERR/Y

IF (ABS(ERR).GT.ERRM) GO TO 2

GD 76 5
ERRM= RES(ERR)
XME= X

IF (ABS(FERR).GT.FERRM) GO TO 3

GO 70 5
FERRM= ABS(FERR)

KMF=X

If (I70L.EQ.2) GO 7O !
CONTINUE

ITO0L= I70L + ¢
PRINT#," MAX E
PRINT#," MAX ¢

ROR= ".ERRM." AT X= ", XME
&ie

ACTIONAL E30R=s ",FERTIM, " AT X= ", NvF
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.

) -

r

»
10

12
C

13

C

[
«Q
__’
C
W
o

PWAATIALIN,IDIM)
V FDCIDIM) , wAAREAR(CIDINM)

£ 3 U1y 0
r ‘

= h-l

FILL 7D VECTGR ASE RIGHT SIDE
DH= 1.0/N

a1 J=1.M

D DX#d/ (N##2)

MATRIX

1

T
R I SN N o Y

n

1 ~

L3
1€l el N oW

.y
| QU

]
e =
CicF

DIAG

2

-—
non
~ . -

i O

.0
(1.0/7(N#2#2))

»

)= DIAG
) GO 70 10

[ S

(

M
r
.0
x
4

o

(=

"]

H
mf__HIJl—-QI—LN

m
~ Tt

1"
-4
)
[N ) ﬂl
N
3

2
[

OOXOXO0 X102
OO0 0 XOoOMNMO

MmNy u M ou

COE:(M.M2)= -1.0
PRINT RESULTS

PRINT#," "
PRINT®," "
PRINT#," "
PRINT#," FINITE DIFFEZRzNCE SOLN FOR ",M," MESH POINTS
PRINT%," RIGHT SIDE VZICTOR= *
PRINT#,(" RE(",J,")= “,FD(J),d=L, M}
ATRIN= ®

PRINT®," CC2ZF MA
DO 12 J=1.M
PRINT#, (" C("pds"y ", I,")= ",CO0EFCJ, 1) I=1.M)
CALCULATZ SOLN LUSING THIS IMPLICIT SCHEME
Mi= 1
IDGT= 8
CALL LEGTIF(CGZ=,ML,M. IDIM,FD,IDGT  WKAREA,IER)
PRINT®," "
PRINT#," FINITZ DIFFERENCEZ SOLN= "
PRINV#, (" FDU"2Js")= " FDUJ) e d=1 M)
PRINT#," MESH PCINT LGCATICNS+ "
DO 13 I=1.M
WKRAREA(I)= DHX«I
PRINT#, 0" X(",1,")= ", WKAREA(LD),I=1,M)
PRINT#," "
RETURN
END
SUeRCUTINE COMPED(FD,N,IDIM)
DIMENSION FDCIDINM)
COMPARE ACCURAZY OF FD AT MESH POINTS
PRINT*," ERROR OF FD AT MESH POINTS= "
DX= 1.0/N
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%= DX#J
V= (SINGX)/SINCILO)) = X

ERR= Y- FD(J)

FERR= ERR/V

IF (AES(EZR).GT.ERRM) GO 70 2

m

»

GG 70 5
2 ERRNM= AES(ERR)
XME= X
5 iF (A25(FERR).GT.FZRRM) GO 7O 3
GG 70 6
3 FERRM= ABS(FERR)
XMr= X
B PRINT#," FOR R= ",X." ERRCOR= ",CXR," AND FRACTION ERRCR= ",FERR
1 CONTINUE
PRINT#," MAX ZRROR= ", ERRIM," AT X= ",XNME
PRINT#," MAX FRACTICONAL ERRQOR= “,FERIM:" AT X= Y, XMF
RETURN
END

SU2ROUTINE SCR(A,XI KD,Y, WK N, IDIM,ALP,CONV)
DIMENSION ACIDIN,IDIM),HICIDIM),Y(IDIM), WK(IDIM)
- 1 .Xa0iDiM

SUCCESSIVE CUE

IR TION FCR AX=Y
XI IS AN INITIA

A
SS AND ALP IS5 A SOR PARAM

-
N

LAY

v
G

[y I o Mo B o

Do 1 I=tL.N
RKK(T)= XKIC(I)
COLNT ITERATIONS FOR MIN GF 10 AND MAX OF 1000
I7C= 1
ALCCRYTHM FOX SOR
D0 20 i=1,N
KC(I)= WwK(I) + (ALP#Y(I)/A(I.I)}
DO 2 J=I.,N
9 XOCIY= XOC(I) - (ALP#A(I.J)*KK(J)/A(I,I))
IF (I.z2.1) GC 70 20
IMt= I-1
B0 10 J=1,1IM1
10 XO0(I)= A0(I) - (ALr#A(I,J)#X0(J)/A(LI.1))
20 CONTINLE
C CONVERGENCE TEST
ICONV= 0
DO S0 1=1,N
IF (ABSCIXOCI)Y-WK(INI/XO(I)).GT.CONV) ICONV= 1
WE(I)Y= XO(D)
50 CONTINUE
I= (ICCNV.EQR.0) O TO 80
IF (ITC.GE.1000) GO TO 70
I7C= ITC+1

) »a

(el o ]
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80

50

GO 70 8

AYINT#, " SCR NGT CONVIRCGEZD
RETURN

IF (i7C.GT.10) GO 70 90

ITC= I7C+!

¢6 7O @

FRINT#, " SCGR CONVERGED "
RETURN

cND
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i
C
3
4

Transient Computer Program

RCOVAY TIVZL(INPUT,CUTPLT,)
MA_ZX ALFA(ZO0) ,2(20.Z20),LANDA(20)

,.) €1 Mg
\l’l “

1 :?anDA(EO)7R?Z(20:ZD).FD(IOOyZ

ECUIVALENZE (ALFACL) A RALFATL) ), (201, 1) RZ(L))

iDiM= 20

IDIMZ2- 2x1DIM
IDIME= IDIM#IDIM2
IDINF= 100

DI 5 44=1,3

Tz .05 # JJ

DO ! ICRIT=1,2

DO 1 N=1,20

AL A(20,20),2(20,20), #X(BCC),RI(E00) RALFA(40),BETA(20)

CALL MWRSCL(A,8,N,IDIM,ICRIT,Z,RRZ,RLANDA,ALFA,BETA KX ,RZs

i RQLFAyZDZ“ IDING, LA”DA)

CUNTINUE
p0 3 il=1.,10
N= II%:i0
DX= 1.0/7(N+1)
DT= (DX¥%2)/2.1
;7 (DT.GE.T) €O 70 10
IVAL=s 7/07
IVAL= IVAL+!
DT= T/IVAL
GO TO 30
0 DT= 7
LOAD INITIAL UALUES
0 DC 4 1=1,N
Fo(I,1)= 0.0
PRINTS," "
PRINT#," "
PRINT*," "
PRINT#," FD SOLN FOR ",N," MESH POINTS "
Do 2 J=1,1IVAL
CALL FISCLN(FD,AA N/ DT WK, IDIMF)
CONYINUE
PRINT#,(" FD(",I,")= ",FD(1.,2),1=1,N}
CALL CCMPED(FD,N,IDINF,T)
CONTINUE
CONTINUE
END
SUZROUTINZ GALT(A,B/N,IDIM)
DIMENSICN ACIDIV,IDIM),.B(IDIM,IDIM)
FILL A AND 8 MATRICES
DO 1 J=1,N
DO 1 I=1,N
AW D) = (Lo (Te(I-1) )/ 0J+I-1))
1 - ((2.02(1#+2))/(J+1))
2+ (1.0 (I (i+1)))/70J+I+1 )0
B(dsi)= (2.0/(J+142)) - (1.0/7(J+I+1))

- e




——

j e —— — e e

= (1.0700+41430)

: CONTINUE
RETURN
END

SL3RDOUTINT COLT(A/B/N.IDIM)
DI" ZNSIGN ACIGIY,IDINM).2(1DIK,IDIM)
C FILL A AND B MATRIX
DX= 1.0/(N+1)
UG L J=1,N
L0 ! I=1,N
A= DX#d
I= (1.EQG.1) GO 74 10
G0 7D 20
10 ALY, 1)Y= -2.0
GG 70 50
20 IF (1.£Q3.2) 6B TO 30
GO 70 40
30 ACJ 1)= Z2.0-(6.0#X)
GO TG 50
&0 A D)= (I8(I-D)% (X% ([-2))) - (I#{I+1)#(X##([-1)))
50 20Je00= (XK#x(I41)) - (Xe2])
1 CONTINUE
RETURN
END
SUBROUTINZ MARSCL(AB,N,IDIM: ICRIT,Z,RRZ,RLAMDAALFA,BETA,
1 WX RERALFALIDINZ. DIV, LANDAY

REAL ACIDIM,IDIN),B(IDIM,IDIM),WK(IDIMS),RZ(IDIMS) RALFA(IDIM2),
1 BEVA(IDIM) RLAYDALIDIM)  RRZ(IDIM,IDIM) .
C COMPUTZ A AND B MATRICZS
PRINT#," "
PRINT#," "
PRINT*," "
PRINT#," MJR SOLUTION FCR ",N," TZRM EXPANSION "
IF (ICRIT.eG.1) CO 70 toO
GO TO 20
10 PRINT#," COLLOCATICN"
CALL COLT(A,B8,N,IDIM)
GO TO 40
20 IF (ICRIT.EG.2) GO TO 30
GO TO 40
30 PRINT#," CALLERKIN"
CALL GALT(A,E,N.IDIM)
40 PRINT#," MATRIX A= *

DO t J=1,N
1 PRINT#, (" A("y "y "s L™= "0, 1) I=1,N)
PRINT#," MATRIX B= "
DG 2 J=1,N
2 PRINT#,(" B(",ds"y" 4 I,")= ",B(JeI)si=1.N)
C CALCULATE EIGINVALUES AND EICGENVCZCTCRS
1J0B= 2
CALL EIGZF(A,IDIM,B,IDIM,N,IJGB,RALFA,BETA/RZ,IDIM:NA,ILR)
BRINT=," .

PRINV#," SOLUTICN VALUES ©
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100

110

-

~y

FRINT#," IER= ", IZR

JTZ\Tv,” FIRFCRYANCE INZEN= "yadil)
STIN0CIoTOIN AND ZEAL CiGEnWALUES

DS O Jd=14N

I8 (£227At4).EQ.0.0) CO TO 100

€3 70 119

FIINTH, " BETA(",Js")= Q.0 "

ciep

LAYIAL) = ALFA(JY/BETACY)

RoAMDA(D) = ALFA(G)Y/3ETA(D)

CONTINUE

PRINTH, " COMPLIX EIGENVALLES=

PRINT#, (" (", 1,%)Y= “,LAMDA(I)-I=1,N)

PRINT#," REAL EI0ENVALUZS=

PRINT#, (" LR(",I,")= ", RLAMDA(I),I=1,N)

PRINT#," COmFLZX EIGENVECTORS= "

DO 4 J=],N

PRIMT®, (" ZU(", Js"y "I ")= ", 20, 1), 121 ,N)
FORM REAL CIGENVECTORS

CALL CANFIX{Z,ARLNSIDIM,RZ,IDING)

SETUP MATRICES T30 CALCULATZ EIGENVECTOR MULTIPLIERS
IF (ICRIT.ZG.1Y GO TG 200
GO TG 210
calt CDLU(A;BtTAvRRZ:N;IDIM)
G0 70 2
iIF (3 C?" £4.2) GO 70 220
60 70 230

CALL GALY(A/BETASRRZ/N,IDIM)
SCLVE SYSTIM FOR MULTIPLIERS

mL=1

IDGT=8

CALL LEQTIF(AML N, IDI¥, 2ETAIDGT WK, 1ER)

PRINT#," FIR I.C. SOLJTION IER= ".lER

PRINT#," MULTISLIERE ARE= "

PRINT#, (" M(",1,")= ",B3ETA(I),I=1,N)
SCALE =ZIGENVEITCRS BY MULTIPLIERS

DO B XK=1.N

DO 6 I=1,N

ARZ(I:X)= RRICILKI#¥BETA(KY

RETURN

END

SUBROUTINE GALV(A,BETA,RRZ/N,IDIN

DI¥ZINSION A(IDIM,IDIM),CETALIDIN)
FILL BETA MATRIX

D2 1 J=L,N

BETA(J)= (2.0/(4+Z2))-(1.0/(J+1))~-(1.0/(J+3}}
FILL A MATRIX

RRZ(IDIM, IDIM)

D0 2 K=1,N

ACJ,K)= 0.0

DO 2 I=1.,N

ALK = ARG KI+(RRZITIK)IR((L.0/CJ+I+1))-(2.0/(J+1+2))
1 +(1.0/7(J+1+3))))

CONT 1ivue
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CONTINUZ

RETURN

END
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O*SIN(ARG)/(?ZE*M*EXP(EX)))
E#M+EXP(CXK)) ) LT.CONV) RETURN

SU’?E;TIVE VXRST(A,TyTxyP?L:?'AﬁDAyIDIM,N)

00 1 I=1.N

Ct= 0.0

DO 2 J=t,

IF (RLA¥DA(J).LT.0,0) GO 70 2

IF ({RLAMDACI)*T).GT.700.0) GO TO 2
Ci= CT+H(RRZ(I,J)/EXP(R_ANDACII*T))
CONTINUE

TH= TMH(CT#O(X#2])—(N#2(1+1))))
CONTINUE

RETURN

END

SULICUTINE M RCOMIRRI,RLANDALLDIMIN,T)
DIKENSZGN IXZICIDIN, IDIM)  RLAMDACIDIM)
CONV= 1.0E-20

COXPARE QT =D POINTS
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PRINT#," "
PRINT*," ERRC
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RAS(FERR)

PRINT#," 3
PRINT#," ¥
RETURN

END
SU2RCUTINE CEMNTIN(Z/RRI N, IDIM,RZ,IDINS)
COMPuEs Z0IDIM,IDIN) (CXI

REAL RIZCIDIVM,I2IM)RZ(IDIMG)

FERRM," AT X= ", XNMF
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PTINTE,™ TOR T- ", T," MAM ERROR= “,EIRY," AT X= U, KME
T Tal= M, Gr =T
’ Tl =2 ~ 2T
" F

DIMING I 1k (IDIMF)
TYs 1,0

e DT/ (DN=#2)

TYTE 1.0-(2.0%R)

2 NEW ANDWN FD UZCTOR
= (R(FDZ,13+0.0)) + (TMrReFD{L, 1))
= (R*¥FDIN-1,1)) + (TMR*FDIN,1))

SZT NZL SOLUTICN INTG CLD SGLUTICN
90 & I=1i.N
FD(I,1)= FD(I,2)
RETURN
END
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